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This talk will (probably) be strange

It’s about things we don’t understand
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Biology through the centuries

Turn of last century, biology involved chemistry, geometry, and physics

On Growth and Form, 
D'Arcy Wentworth Thompson, 1917
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Biology through the centuries

Romanesco broccoli

Fascination with patterns, 
spirals, 
self-similarity, 
mechanics,
cells vs. inanimate objects

Kenneth Libbrecht, Caltech Physics
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Biology in the 20th century
Massive explosion of molecular biology and biochemistry

Physics largely disappears, except instrumentation/methods

Defined by the gene, culminating with the sequencing of the human genome in 2004

Key idea: Sequence the genome and then read the blueprint

Protein X causes disease Y

Function is defined by protein biochemistry 
and network connectivity

Wang et al., Nature 444, 2006,  Interaction network for pluripotency of embryonic stem cells
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Taking stock, 2010

Entire human genome sequenced

Know most of the key proteins

Know their structure and function, individually

Interaction networks
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Taking stock, 2010

Entire human genome sequenced

Know most of the key proteins

Know their structure and function, individually

Interaction networks

Is biology over?

Thursday, May 27, 2010



Taking stock, 2010

Entire human genome sequenced

Know most of the key proteins

Know their structure and function, individually

Interaction networks

What’s the grading scheme, how do we know where we’re at?

Is biology over?
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R. P. Feynman’s Blackboard
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Scorecard

Ok - so how much of the biological world around us can we recreate, from first principles?  

Effectively, zero!

Not a simple matter of scale, cost, infrastructure, dedication, lack of interest... 

Reflects a significant lack of knowledge of fundamental biological organizing principles 
and mechanisms

There is no “Standard Model” of biology
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Problem 1:
Genes ⇔ Cell Types

Human genome has ~ 23,000 protein coding genes.
 
1.5% of the genome codes for proteins

The rest: non-coding RNA genes, regulatory sequences, introns, and “other” DNA

Each protein is subject to exquisite regulation 
of concentration, activity, and location 

- via pre- and post-translational, control of nuclear 
export, alternative splicing, phosphorylation, SUMO-
lation
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Problem 1:
Genes ⇔ Cell Types

Alternative splicing: combinatorics are absolutely overwhelming

Thousands of genes have more than 2 isoforms, some as many as 12

www.pnas.org/content/103/22/8390/F1.large.jpg

Number of theoretically possible 
distinct mRNA/protein sets is staggering 
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Problem 1:
Genes ⇔ Cell Types

And yet, there are only about 210 distinct, discrete human cell types. 

Schematic of the cellular type space
210 patches - I’m showing 3

System is highly degenerate - 

many different (combinations) of pathways, 
genes, “microstates” lead to same cell type
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Direct conversion of fibroblasts to functional neurons by defined factors
doi:10.1038/Nature 08797

Ascl1
Brn2
Myt1l

Problem 1: Genes ⇔ Cell Types
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Problem 1:
Genes ⇔ Cell Types

• Astronomical number of biochemical “microstates”
• Thousands of positive and negative feedback loops
• All of this is taking place in thermal bath, energies on order of a few kBT
•10 trillion cells in the body

And yet

• Small number of cell types
• Cell types tend not to change suddenly
• Development remarkably reliable

Then again, cells are not irreversibly locked into a particular cell type

• If needed (wound healing, differentiation), cells are plastic and can switch type
• Plasticity/type switching involves a few genes

Largely unclear how this works - some type of statistical mechanics approach probably needed
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Problem II:
Robust Development of an Animal from one Cell
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Problem II:
Robust Development of an Animal from one Cell

Michael Klymkowsky, Xenopus embryos (frog) 
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Xenopus laevis Vegetal View of Gastrulation & Neurulation: (15.0 hours elapsed, 48 minutes/second)
http://www.gastrulation.org/

Problem II:
Robust Development of an Animal from one Cell

Requires the coordinated, error-correcting, 
self-replication and self-organization of 
trillions of cells
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Xenopus laevis Vegetal View of Gastrulation & Neurulation: (15.0 hours elapsed, 48 minutes/second)
http://www.gastrulation.org/

Problem II:
Robust Development of an Animal from one Cell

Requires the coordinated, error-correcting, 
self-replication and self-organization of 
trillions of cells
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• Reliable self-replication and self-
organization of trillions of cells into an 
animal

• We are good at breaking development, 
but by Feynman’s standard, have next to 
zero ability to reprogram development in 
a controlled manner.  

Largely unclear how this works - local and global mechanical and chemical cues are used

Problem II:
Robust Development of an Animal from one Cell
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Problem III:
Integrating Genes with Mechanical Forces

Jan Schmoranzer, Wounded monolayer of fibroblast cells in culture, Columbia University
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Normal mammary epithelial cell growth, survival, differentiation and morphogenesis are optimally supported by a 
soft matrix (~200 Pa). 

Following transformation, breast tissue becomes progressively stiffer. 

Matrix materials properties, cellular tension and normal tissue behavior

Butcher,  Alliston and Weaver 
Nature Cancer Reviews 2009
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Protein and Cell-level Force Sensing/generation

When cells encounter a mechanically rigid matrix 
(or are exposed to an exogenous force) integrins are activated, favoring 

• integrin oligomerization or clustering, talin 1 and p130Cas protein unfolding, (*)
• vinculin–talin association, (*) 
• Src and focal adhesion kinase (FAK) stimulation of RhoGTPase-dependent actomyosin contractility
• actin remodeling. (*)

Butcher,  Alliston and Weaver 
Nature Cancer Reviews 2009
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Tensional homeostasis

Cells measure forces/compliance
Cells generate forces
Cells change their compliance and the compliance of the ECM

Tension sensing/actuation loop with positive and negative feedback, with a range of setpoints

non-malignant human mammary epithelial 
cells spread more and exert more force on 
a stiff matrix than on a soft matrix

Fgenerated ∝ γ⋅EMmatrix

        

γnormal < γcancer

Butcher,  Alliston and Weaver 
Nature Cancer Reviews 2009
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Problem III: Integrating Genes with Mechanical Forces

Physical modeling of cell geometric order in an epithelial tissue, Hilgenfeldt, Erisken, and Carthew,  PNAS 2008.

surface energy per area by a fixed amount !E and !N, respec-
tively. Fifth, we do not expect the cross-sectional area of the cells
to change, because such changes would involve bulk rearrange-
ment of cytoplasm outside the narrowly defined adherens junc-
tion plane and also because, at least for small deformations, such
changes are higher-order contributions to the total energy
compared with perimeter-length changes [see supporting infor-
mation (SI) Text]. Then, a minimal model for an energy func-
tional is

E ! !
i

1
2 "i

2L0i " !
i, j

Lij#E$i,E$j,E " !
i, j

Lij#N$i,N$j,N, [1]

where each cell i contacts its neighboring cells j. Because we are
only interested in the shape (not the absolute size) of the pattern,
KA was scaled out and we introduced a relative membrane stretch
"i # (Li $ L0 i)/L0 i. The relative cadherin adhesion strengths are
#E # !E/KA and #N # !N/KA, active along the edges of length Lij
shared by cells i and j, if both cells express the respective cadherin
(a homophilic interaction, represented by the product of Kro-
necker delta functions). This energy functional is supplemented
with Lagrange multipliers (20) to enforce the constant cross-
sectional areas of the cells.

We quantified the observed shapes of cells within ommatidia
by using a number of geometric characteristics. We measured
these characteristics in Drosophila pupal retinas (48 h old; see
Materials and Methods). To obtain unbiased, quantitative data,
we digitized the cell interfaces from microscopic images by using
algorithms from the Matlab imaging toolbox (21), and we fit the
skeletonized interfaces to circular arcs (see Materials and Meth-
ods), consistent with our model that predicts uniform tension
along each edge. Several geometric characteristics were mea-
sured. To simplify the measurements, we treated ommatidia as
structures with fourfold symmetry (Fig. 2). Anterior and pos-
terior cone cells are treated equivalently and are labeled C1,
equatorial and polar cone cells are type C2, and primary pigment
cells are type P. The geometric characteristics that were mea-
sured were the following: (i) the ratio of the width of a secondary
cell attached to one P cell (w1) to that of a secondary cell
attached to two P cells (w2); (ii) the center edge length Lcen
between C2 cells; (iii) the distinct angles %1–%4 between core
edges; (iv) the relative cross-sectional areas Si/Stot, where Stot is
the area of the entire ommatidium. The measured data, averaged
over %100 measurements, are shown in Table 1, demonstrating
that the geometry is extremely well defined, with only a few

percent of variation in angles and lengths between different
ommatidia.

We noted that both the skeletonized images and fits showed
angles between primary and secondary pigment cells very close
to 90°. Thus, the tension in secondary cells is much higher than
in primary cells, resulting in a mechanical decoupling of the
‘‘frame’’ from the ‘‘core.’’ Our modeling naturally proceeds in
three steps, fixing parameters starting from the frame and
moving inward to the core.

In the first step, we optimized the membrane tension of second-
ary and tertiary pigment cells &f in the frame, to match the measured
w1/w2 (Table 1). Our second step analyzed the %1 angle (Fig. 2),
which governs the attachment of the cone cells to the P cells, and
found that it strongly depends on L0P, the equilibrium perimeter
length of the P cells. The observed %1 is reproduced by setting
L0P/(2('SP)1/2) & 1.40 ' 0.01, independent of other parameters,
confirming experimental evidence that the P cell cross-sections in
equilibrium (i.e., in P cells detached from their neighbors) are
elongated (10). A similar fit of L0C1 and L0C2 is unnecessary,
because detached cone cells show very nearly circular cross-sections
(10), so that we can set L0Ck/(2('SCk)1/2) # 1.00, where k # 1,2. The
third and final step takes the core angles %2,%3, %4, and Lcen as inputs
to optimize the adhesion strength parameters #E and #N (Fig. 2).

Fig. 1. Drosophila eye geometry. (A) Adherens junction (AJ) cross-section schematic of an ommatidium, with the ‘‘core’’ of cone and primary cells and the
‘‘frame’’ of secondary and tertiary/bristle cells. (B) Side view of an ommatidium with photoreceptor cells (R) below the AJ and the lens (L) above it. The dimensions
of the ommatidium are 20 (m across and 20 (m deep, as marked. In contrast, the depth of the AJ is 50 nm. (C) Double-stained confocal fluorescence image at
the AJ plane of a pupal retina (age, 48 h). Antibody staining highlights E-cadherin (green) and N-cadherin (red); where the two proteins are colocalized the color
appears to be orange. Note the extreme regularity of the structure.

Fig. 2. Nomenclature and geometry of the modeled ommatidium. Indicated
are the C1 (anterior and posterior cone), C2 (equatorial and polar cone), and
P (primary pigment) cells, and the angles %i for the upper-right quadrant. The
edge between the two C2 cells has length Lcen, and the widths of the secondary
pigment cells attached to one (w1) or two (w2) P cells are shown. All edges carry
E-cadherin, whereas the edges between C cells (blue) carry both E- and
N-cadherin.

908 " www.pnas.org#cgi#doi#10.1073#pnas.0711077105 Hilgenfeldt et al.

!
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Mechanobiology ->
How are mechanical cues generated, transmitted, and integrated with chemical cues?
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Problem 1: Genes ⇔ Cell Types

Problem II: Robust Development of an Animal from one Cell

Problem III: Integrating Genes with Mechanical Forces
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Precision control and measurement

quantum dots, nanowires, plasmonics

Single-molecule Biophysics

Mechanochemistry/
Molecular machines

Biological Form and 
Function

3D arrangement vs. 
function

Oncology

Mechanobiology
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Key people: 

Eric Betzig (HHMI, Janelia Farm)

Hari Shroff (HHMI, Janelia Farm)

Ann McEvoy and Derek Greenfield

Ned Wingreen (Princeton)
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Spatial cell biology:
Parts, and their relative organization, determine function
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Key: reliable counting plus relative organization

Spatial cell biology:
Parts, and their relative organization, determine function
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Key: reliable counting plus relative organization

Does this cell have 37 polymerases?

Does this cell have 8, 93, 764, or 8092 copies of Protein X?

How are those 8092 copies organized in space, relative to 
one-another?

Spatial cell biology:
Parts, and their relative organization, determine function
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Who cares?
What possible utility could there be to know 3 vs. 36 molecules? 
5435 vs. 8735?
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Who cares?
What possible utility could there be to know 3 vs. 36 molecules? 
5435 vs. 8735?

Precision counting certainly relevant when something is rare 
⇒ big difference between 0 and 1

⇒ fluxes... rate of production versus time

⇒ essential for robust model testing...
⇒ thermodynamics...
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Who cares?
What possible utility could there be to know 3 vs. 36 molecules? 
5435 vs. 8735?

Precision counting certainly relevant when something is rare 
⇒ big difference between 0 and 1

⇒ fluxes... rate of production versus time

⇒ essential for robust model testing...

What you really want is precision counting + relative location 
⇒ special combination

⇒ thermodynamics...
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• The exponentially distributed sizes of rain drops reflect their spontaneous aggregation and 
growth

• The Gaussian distribution of cell length in E. coli reflects the tightly regulated process of 
growth and division 

• The relative spatial positioning of clusters and the precise distribution of cluster sizes contains 
information about the mechanism of cluster formation 

Numbers + relative position - why special?
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• The bacterial chemotaxis network 
directs movement toward or away 
from chemicals. 

• Extremely well studied model 
system.

• Five types of transmembrane 
receptors form trimers of dimers.

• These cluster in large complexes 
that transduce signals to flagellar 
motors.

E. coli chemotaxis network
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How do chemotaxis receptors get to specific locations?

Active

Thiem, Kentner, Sourjik, EMBO, 26 (2007)

Regulation of positions and sizes of clusters 

Positioned relative to unknown cellular 
structure

Most receptors at specific sites

Passive

Diffusion and capture

No active transport

Receptors throughout membrane

Shiomi, Yoshimoto, Homma, Kawagishi, 
Mol Microbio, 60 (2006)
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Answer by looking…

Fluorescent Microscopy
Excellent specificity but limited resolution

Zhang, et al., PNAS, 104 (2007)

Cryo-EM Tomography
High resolution but little specificity

YFP-CheR
Thiem, Kentner, Sourjik, EMBO, 26 (2007)
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• (How do the parts work?)

•How do chemotaxis clusters form? What controls cluster size 
and density?

•How is the cellular location of clusters robustly maintained in 
growing and dividing cells?

•How does spatial organization of receptors influence signal 
processing?

•How does the network function?

E. coli chemotaxis network

Idea: Many of these questions can be answered by 
counting and localization
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Diffraction Limited Imaging

simulated diffraction limited image simulated molecules at a surface
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Diffraction Limited Imaging

simulated diffraction limited image simulated molecules at a surface

Solution: image one molecule at a time
E. Betzig, et al., Science 313, 1642 (2006)
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PALM

}
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+

PALM

}
Protein initially 
not fluorescent at 
specific wavelength

UV light induces a 
conformation change
and “activates” protein

Protein becomes fluorescent 
and can be observed 
and bleached
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PALMing chemotaxis receptors

Made fusions to mEos2 (photoactivatable fluorescent protein)

– Fixed whole cells

– Imaged in PALM (with 15 nm precision)

– Only interpretable when several types of proteins are tagged -> internal cross-validation

– most difficult part was...
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DIC
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DIC Conventional Fluorescence
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DIC Conventional Fluorescence

PALM Acquisition
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DIC Conventional Fluorescence

PALM Acquisition PALM
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We can image many cells at once
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We can image many cells at once
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Cluster quantification

Examine 326 cells to determine the distribution of cluster sizes 
(# of proteins per cluster) - 1.1 million proteins

1 μm

Closely spaced proteins are part of the same cluster
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Cluster sizes are __________ distributed
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Analysis of relative cellular location of 
1.1 million proteins, from 326 cells

Cells contain a mix of different cluster 
sizes and do not have a “preferred” 
cluster size
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Analysis of relative cellular location of 
1.1 million proteins, from 326 cells

Cells contain a mix of different cluster 
sizes and do not have a “preferred” 
cluster size
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Cluster sizes are __________ distributed

Stochastic Cluster Nucleation Model
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Model: stochastic cluster nucleation

Highest density of single receptors is furthest away from existing cluster(s)

Thursday, May 27, 2010



Benefits of being able to count, 
protein by protein

Sqrt(n)
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Benefits of being able to count, 
protein by protein

Sqrt(n)
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Cluster sizes are exponentially distributed
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Physical picture

• Imagine you’re a particle or astrophysicist, and you have a 
finite number of identical detectors

• Imagine that those detectors cooperate linearly (snap N of 
them together, N times the sensitivity, but 1/N range)

• Your goal is to build a detector network with high sensitivity 
and wide dynamic range

• What topology do you use?
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Hang on...

• Looked at cluster size 
distribution
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• But what about relative spatial arrangement?

Thursday, May 27, 2010



Conclusions

• Looked at cluster size 
distribution => direct 
evidence for stochastic 
nucleation
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Conclusions

• Looked at cluster size 
distribution => direct 
evidence for stochastic 
nucleation
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• Analysis of relative spatial arrangement reveals 
cluster exclusion => new clusters nucleate 
furthest from old clusters
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Model: stochastic cluster nucleation

Highest density of single receptors is furthest away from existing cluster(s)
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Model predictions
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Model predictions

Percent of cell length
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Model predictions

Percent of cell length
Percent of cell length
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Model predictions

Percent of cell length
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Model predictions

Thursday, May 27, 2010



Turing patterns
Chemical morphogenesis (Turing, 1952):

• A system of reacting and diffusing chemical species can spontaneously form 
stationary spatial patterns given a certain set of chemically plausible 
mechanisms. 

• Two reacting chemical species that diffuse at very different rates. 

• The system is an intrinsically non-equilibrium; both substances are 
continuously created (by the cells) at every point in space, and also decay or are 
removed at specified rates. 

• In these reactions the activator makes more activator and inhibitor, and the 
inhibitor destroys the activator. 

Erik M. Rauch and Mark M. Millonas, J. Theoretical Biology
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How do chemotaxis receptors cluster?
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How do chemotaxis receptors cluster?

Active

Thiem, Kentner, Sourjik, EMBO, 26 (2007)

Positioned relative to cytoskeleton
Transported or captured

Receptors at specific sites
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How do chemotaxis receptors cluster?

Active

Thiem, Kentner, Sourjik, EMBO, 26 (2007)

Positioned relative to cytoskeleton
Transported or captured

Receptors at specific sites

Passive

Diffusion and stochastic self-assembly
Membrane curvature as energy minimum

Receptors throughout membrane
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How do chemotaxis receptors cluster?

Passive

Diffusion and stochastic self-assembly
Membrane curvature as energy minimum

Receptors throughout membrane

Purely passive mechanism for generating and maintaining 
periodic protein distributions in membranes
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event

Efficiency and selectivity via multi-step mechanism, consisting of a cascade of reversible pre-filters and a final irreversible exit step

Self-organization of the E. coli Chemotaxis System Imaged with Super-resolution Light Microscopy
D. Greenfield, A. McEvoy, H. Shroff, G. Crooks, N. Wingreen, E. Betzig, and J. Liphardt
PLoS Biology (2009)
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Problem 1: Genes ⇔ Cell Types

Problem II: Robust Development of an Animal from one Cell

Problem III: Integrating Genes with Mechanical Forces

On Growth and Form, 
D'Arcy Wentworth Thompson, 1917
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